Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mathematics ; 10(7):1201, 2022.
Article in English | MDPI | ID: covidwho-1776282

ABSTRACT

This paper proposes an economical-environmental-technical dispatch (EETD) model for adjusted IEEE 30-bus and IEEE 57-bus systems, including thermal and high penetration of renewable energy sources (RESs). Total fuel costs, emissions level, power losses, voltage deviation, and voltage stability are the five objectives addressed in this work. A large set of equality and inequality constraints are included in the problem formulation. Metaheuristic optimization approaches-Coronavirus herd immunity optimizer (CHIO), salp swarm algorithm (SSA), and ant lion optimizer (ALO)-are used to identify the optimal cost of generation, emissions, voltage deviation, losses, and voltage stability solutions. Several scenarios are reviewed to validate the problem-solving competency of the defined optimisation model. Numerous scenarios are studied to verify the proficiency of the optimisation model in problem-solving. The multi-objective problem is converted into a normalized one-objective issue through a weighted sum-approach utilizing the analytical hierarchy process (AHP). Additionally, the technique for order preference by similarity to ideal solution (TOPSIS) is presented for identifying the optimal value of Pareto alternatives. Ultimately, the results achieved reveal that the proposed CHIO performs the other approaches in the EETD problem-solving.

SELECTION OF CITATIONS
SEARCH DETAIL